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Abstract 

Species distribution modelling is important in conservation planning and many other fields of study. It is however 

often fraught with bias in the location data used to develop the models. Spatial thinning is one of the bias 

correction methods. It has been reported to be superior to the background correction method in modelling 

experiments. However, the effect of spatial thinning on predicted areas and model assessment characteristics are 

unreported. We examined the effects of spatial thinning on the potential distribution of 10 African indigenous 

vegetables (AIV). The aims of our study were to investigate the effect of different spatial thinning distances on (1) 

the potential predicted areas (present and future 2070) of 10 species of AIV and (2) model evaluation statistics. 

We applied spatial thinning to the location data using the R package ‘spThin’ at distances of 0, 10, 20, 40, 60, 80 

and 100km. For each species MaxEnt was used to run 10 replicate models with cross-validation and a threshold 

of 10% training presence. There were between 54 and 564 location data points a species after cleaning of GBIF 

data and 153-25 after thinning at a spatial resolution of 100km. The area under the curve (AUC) of the receiver 

operating characteristic, Boyce Index and the true skill statistic (TSS) decreased with increasing spatial thinning 

distance but sensitivity remained relatively constant. There was consistency in the direction of prediction for eight 

of the 10 species while spatial thinning influenced the direction of prediction for two species. Future 2070 suitable 

climatic envelope may be larger than the present for six species, remain the same as present for three species and 

become smaller for one species. We concluded that while spatial thinning may be useful in correcting for under-

estimation caused by clustered data, it might also lead to incompleteness in environmental space leading to 

unexpected results if not done with caution. Although the differences in the extent of suitable climatic envelope 

may imply reduction of overall biodiversity, no species was under serious threat of complete loss of suitable 

environment in the future. 
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Introduction 

Species distribution modelling is important in the 

study of many areas including ecology, conservation 

planning, species invasion, and evolution (Guisan, 

Thuiller and Wilfried, 2005; Kramer-Schadt et al., 

2013). The accuracy of models is important for 

decision making. Model inputs quality (location data 

and environmental variables) and processing 

(software algorithms, parameter setting and whether 

sufficient precautions are taken) affect the accuracy 

of the model (Beale & Lennon, 2012; Soultan & Safi, 

2017). 

Large amounts of geographic data are available in the 

form of electronic databases that are easily 

accessible, for example Global Biodiversity 

Information Facility (GBIF, 2018). Other records 

exist in natural history museums, herbaria, and 

published literature on collections. These records are 

often presented as presences without indication of 
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where the species was searched but not found. Errors 

are often associated with such data and include 

location errors, identification errors and un-even 

sampling effort over the species ranges (Bloom, 

Flower, & DeChaine, 2017; Newbold, 2010).  

To build reliable models, the number of location 

records should form a representative sample of 

species environment (Hernandez et al., 2006; Wisz et 

al., 2008). Modelling experiments have shown that 

even small samples as low as 10 can produce reliable 

models when MaxEnt is used (Hernandez et al., 

2006; van Proosdij et al., 2016). However, additional 

records from un-sampled areas of the species range 

always improve model performance irrespective of 

records already available (Feeley & Silman, 2011). 

Therefore, the maximum number of records should 

be used but clustered records should be avoided since 

clustering results in poor models (Kramer-Schadt et 

al., 2013; Stolar & Nielsen, 2015; Syfert, Smith, & 

Coomes, 2013).  

Minor location errors may have little effect on model 

accuracy (Soultan & Safi, 2017). Spatial bias on the 

other hand, appears to lead to both local over 

prediction and local under prediction of prevalence 

in different grid cells (Syfert et al., 2013). Location 

data bias also increases both false positive and false 

negative (Kramer-Schadt et al., 2013) and may result 

in under prediction of the species range (Bayor, 

2012; Beale & Lennon, 2012). However, most of the 

readily available data are from records collected and 

cumulated over a period of time (Gomes et al., 2018). 

These types of data are often spatially biased 

(Anderson, 2012; Beck, Böller, Erhardt, & 

Schwanghart, 2014; Gomes et al., 2018; Hortal, 

Jiménez-Valverde, Gómez, Lobo, & Baselga, 2008). 

The nature of the bias in such data is often unknown 

and therefore cannot be readily corrected (Bayor, 

2012; Yesson et al., 2007). However, such data form 

important sources for research to the extent that they 

cannot be ignored (Newbold, 2010) and have been 

widely used because it is expensive and sometimes 

impractical to gather complete location data for any 

single species (Benito et al., 2013; Gomes et al., 

2018). When un-accounted for in modelling biased 

data, results are often poor models (Fourcade, 

Engler, Rödder, & Secondi, 2014; Gomes et al., 

2018; Hortal et al., 2008). Therefore, it is important 

to deal with bias in species distribution modelling 

(Aiello-Lammens, Boria, Radosavljevic, Vilela, & 

Anderson, 2015; Fithian, Elith, Hastie, & Keith, 

2015; Phillips et al., 2009). How effective different 

methods are, have been under study (Fourcade et al., 

2014; Kramer-Schadt et al., 2013). The background 

species method (Phillips et al., 2009) and the spatial 

thinning method (Aiello-Lammens et al., 2015) are 

widely regarded as effective (Fourcade et al., 2014; 

Kramer-Schadt et al., 2013). However, the extent of 

thinning required to make bias correction effective is 

unknown.  

Spatial thinning has been reported as one of the best 

methods to deal with spatial bias of geographic data, 

a common feature of databases (Boria, Olson, 

Goodman, & Anderson, 2014; Fourcade et al., 2014). 

Representative information of the geographic 

distribution of the species and also of environmental 

data are necessary for building an accurate model 

(Tsoar et al. 2007; Kadmon, Farber, & Danin, 2003). 

Spatial thinning removes some of the location data 

leading to information loss. This loss of information 

however, may be compensated for by removal of the 

overweighting of some environmental variables 

(Boria et al., 2014).  

There are many software programmes and 

algorithms used for modelling species distribution 

(Ahmed et al., 2015; Elith et al., 2006; Wisz et al., 

2008).  Of these MaxEnt is probably the most 

commonly used because it is simple, has less 

stringent data requirements (presence only data is 

used), able to accommodate minor spatial errors of 

location data and performs well when the sample size 

is small (Ahmed et al., 2015; Fourcade et al., 2014; 

Kramer-Schadt et al., 2013; Wisz et al., 2008).  

African indigenous vegetables (AIV) form an 

important source of food and nutrition for a large 

number of people on the continent (Achigan-Dako et 

al., 2011; Maundu, Achigan-Dako, & Morimoto, 

2009). Unfortunately, Africa still remains an under 

nourished continent and many households depend on 

wild and semi-wild vegetables for both food and 

nutrition (Achigan-Dako, Sogbohossou & Maundu, 

2014; Achigan-Dako et al., 2011). Climate change 

presents a challenge particularly to wild plants.  

Africa is regarded as a food insufficient continent 

(Luan, Cui, & Ferrat, 2013). Families and households 

have supplemented this with gathering vegetables 

and other food items from the wild (Achigan-Dako et 

al., 2011; National Research Council, 1996, 2008). 
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Vegetables from the wild also form an important 

income generating activity for many rural 

households (Weinberger & Pichop, 2009). Climate 

change may negatively impact on food production in 

agricultural systems (Ramirez-Cabral, Kumar, & 

Shabani, 2017; Wheeler et al. 2000). Food 

insufficiency may probably get worse and 

contribution from non-agricultural food sources 

including gathering from the wild may increase in 

importance. The resilience of wild vegetables may 

also give them a high potential for future cultivation 

in the face of climate change (Ebert, 2014). It is 

therefore important to develop conservation 

strategies for edible wild vegetables for which 

climate change may affect adversely. However, the 

impacts of climate change on these vegetables are an 

important prelude to conservation planning.  

Methods to evaluate species distribution models are 

many (Liu, White, & Newell, 2009; Liu, White, & 

Newell, 2011). Some of them include  the area under 

the curve (AUC) of the receiver operating 

characteristic curve and the true skill statistic but 

these methods were developed for presence-absence 

data (Liu, White, & Newell, 2009). Their application 

to presence only data has been questioned (Jiménez-

Valverde, 2012; Leroy et al., 2017; Lobo, Jiménez-

Valverde, & Real, 2008; Raes & Ter Steege, 2007). 

It has been shown that biased location data often 

gives inflated values for AUC making models appear 

better than they actually are (Hijmans, 2012; 

Radosavljevic & Anderson, 2014). Also, species 

with narrow distributions generally give higher AUC 

values than widely distributed species (Raes & Ter 

Steege, 2007; van Proosdij et al., 2016). Hirzel et al., 

(2006) proposed the Continuous Boyce Index (Boyce 

Index) as a presence-only model evaluation method, 

a modified form of Boyce et al., (2002) index. 

 

AUC values range from 0-1 with 0.5 representing 

models with no better than random predictions and 1 

representing perfect model prediction success 

(Fielding & Bell, 1997). AUC values >0.7 are often 

regarded to have good discriminatory power (Raes & 

Ter Steege, 2007). The true skill statistic ranges from 

-1 to +1 with values around zero and below 

indicating models with no better than random 

prediction success (Allouche, Tsoar, & Kadmon, 

2006). Positive values indicate better than random 

predictions with +1 being a perfect model fit. The 

Boyce index ranges from -1 to +1. Negative values 

indicate wrong model, zero values indicate models 

with discriminatory power no better than random and 

+1 indicates a perfect prediction ability (Hirzel et al., 

2006). 

In this paper we explore the effects of spatial thinning 

on the present and future predicted areas of 10 

species of wild and semi-wild AIV. Our aims were to 

investigate (1) the effects of the distance of spatial 

thinning on the potential predicted areas of 10 AIV 

(2) the effects of spatial thinning on AUC, true skill 

statistic (TSS), sensitivity, specificity and Boyce 

Index of distribution models. 

 

Methods 

Species Location Data 

Ten AIV chosen on the basis of their usefulness 

scoring of at least a three star in their uses at the 

Prota4U database (PROTA4U, 2018) and they are 

wild or semi-wild. The species are shown in Table 1. 

Location data were downloaded from GBIF (GBIF, 

2018) for all 10 species. These were supplemented 

with location descriptions found in the literature. 

These records were verified by plotting on the map 

of Africa. Ranges were checked with information on 

the literature for each species, especially using 

information from the Prota4U database.

Table 1: Species and number of location records used for modelling and the spatial thinning distances (km) 

applied. Thinning at 0km implies thinning was not done. 

Species 

Thinning Distance (km) 

0 10 20 40 60 80 100 

Commelina Africana L. 564 543 520 297 234 184 153 

Cleome gynandra L. 324 297 278 220 186 165 148 

Corchorus olitorius L. 287 243 209 152 130 119 105 
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Ceratotheca sesamoides Endl. 229 184 149 118 100 86 80 

Gymnanthemum amygdalinum (Delile) 

Sch.Bip. ex Walp.   
217 195 171 138 138 104 97 

Hibiscus sabdariffa L. 131 114 101 84 76 66 60 

Solanum aethiopicum L. 313 240 198 143 110 83 72 

Solanum macrocarpon L. 139 120 106 93 76 68 60 

Solanum scabrum Mill. 54 45 39 33 30 27 27 

Talinum fruticosum (L.) Juss 100 67 52 38 30 27 25 

 

Environmental Variables 

Climate data were obtained from the WorldClim 

website (Hijmans, Cameron, Parra, Jones, & Jarvis, 

2005) with additional soil data from the Harmonized 

World Soil Database (FOA/IIASA/ISRIC/ISS-

CAS/JRC, 2012). Climate data were trimmed to 

match the map of Africa. All the 19 bioclimatic 

variables were used although issues with 

autocorrelation may arise (Dormann et al., 2013; 

Hijmans, 2012). We were of the opinion that the 

benefits derived from dropping some variables is 

minimal (Kramer-Schadt et al., 2013). Four soil 

variables taken from the top layer (namely, soil pH, 

soil texture, soil organic matter content and soil bulk 

density) were added to the bioclimatic variables 

giving the total number of variables used as 23. All 

climate and soil variables were prepared at 2.5 arc 

minutes equivalent to 4.5km at the equator. 

Spatial Filtering 

Location data from each of the species were filtered 

at six distances (10, 20, 40, 60, 80, and 100km) using 

the package ‘spThin’ (Aiello-Lammens et al., 2015). 

In addition, the un-thinned data sets were added 

(designated 0km) for the modelling. Therefore, for 

the ten species we had 70 data sets (including non-

thinned data from GBIF). 

Software 

 Each of these data sets was run on MaxEnt (ver. 

3.4.0) using the default setting. These included a 

background pseudo-absence records of 10,000, and 

output format of Cloglog with 10 replications of 

cross-validation. A threshold of 10% training 

presence was used. Seven hundred models (10 

species x 7 thinning distances x 10 replicates) were 

built and for each a prediction was made for the 

present and the future (2070) using the Had85 

representative concentration pathway. This path-way 

represents one of the severe situations that might 

arise (van Vuuren et al., 2011). Present and future 

predicted areas were calculated using ArcMap 

10.4.1. 

Model Assessment 

Models were evaluated with the Area Under the 

Curve (AUC) of the receiver operating characteristic 

(ROC) curve (Fielding & Bell, 1997), and the True 

Skill Statistic (TSS) (Allouche et al., 2006). 

Sensitivity and Specificity were also calculated and 

examined (Fielding & Bell, 1997). Continuous 

Boyce index (Boyce index; Hirzel et al., 2006) was 

calculated with the R package ‘ecospat’ (Di Cola et 

al., 2017). 

Results 

Number of Location Records 

Number of location records for the species ranged 

from a high of 564 to a low of 25 after thinning 

(Table 1). These were the records that MaxEnt 

actually used in building the models. Number of 

records within this range has often been considered 

to be adequate for building reliable models (Soultan 

& Safi, 2017; van Proosdij et al., 2016). 

Model Assessment 

The AUC, Boyce index, TSS, and Specificity all 

showed significant (Kruskal Wallis test p<0.05; 

mean ranks separated by Conover-Iman procedure) 

reduction with increase in spatial thinning distance of 

location data points (Error! Reference source not 

found.; Figure 1a-j; Figure 2a-j; Figure 3a-j; and 

Figure4a-j).  The models built with GBIF data always 

give the highest values in all these model assessment 

parameters (Appendix 1) but in many instances, 

these were not significantly different from the next 

two or three thinning distances (0, 20 and 40km). The 
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widest spacing (100km) mostly gave the least values 

of these four parameters. Sensitivity, however, 

showed only a mild declining trend and did not differ 

significantly (Kruskal Wallis test p =0.05) with 

increasing thinning distance. The median values 

were generally high for all models (Appendix 1). The 

lowest medians of the model assessment statistics at 

the widest spacing (100km) were AUC (0.77 - 0.91), 

TSS (0.37 - 0.62), sensitivity (0.65 - 0.82), specificity 

(0.54 - 0.90) and Boyce index (0.56 - 0.86) 

(Appendix 1). This probably indicates a good enough 

discriminatory power even at the widest spacing for 

models.  

The spread in AUC, Boyce Index, TSS and 

sensitivity increased with increasing thinning 

distance (Fig 1a-j; Figure 2a-j; Figure 3a-j; and 

Figure5a-j). This was particularly pronounced in the 

sensitivity measures. 

Climate and Predicted Area 

Future climate had different effects on potential 

predicted areas of the species (Figure 6). Based on 

paired t-test (at 5% probability) of present and future 

predicted areas of each species, one species 

(Commelina Africana) is likely to experience a 

significant reduction in suitable climatic envelope in 

the future 2070. Three other species (viz. C. 

gynandra, C. oliturios and G. amygdalinum) would 

experience no change while the rest are likely to 

experience various amounts of increases in climatic 

envelope. The magnitudes of changes vary widely 

among species ranging from -62% for Commelina 

Africana to 138% for Talinum fruticom (Figure7a-j). 

Thinning and Predicted Area 

Over all, thinning increased the potential predicted 

area. In all instances the un-thinned data had the least 

predicted area. As indicated in Error! Reference 

source not found., the widest thinning also 

corresponds with fewest number of location records. 

The present predicted areas showed increasing trend 

with increasing distance of spatial thinning (Figure 

7a-j). However, the widest spatial thinning (100km) 

does not always produce the largest predicted area 

except for three species (C. Africana, C. gynandra 

and S. aethiopicum).  In the other instances, the 

100km thinning distance produced predicted areas 

close to the highest and mostly not significantly 

different from the highest (one-way ANOVA; means 

separated by Tukey HSD). 

  

Table 2: Kruskal Wallis test values and levels of significance (p-values) to compare model assessment statistics 

(Test AUC, sensitivity, specificity, TSS and Boyce Index) among different thinning distances for each species. 

Thinning distances did not significantly affect sensitivity values but AUC, specificity, TSS and Boyce Index values 

decreased with increasing thinning distances. (AUC = area under the curve of the receiver operating 

characteristic curve; TSS = true skill statistic) 

 

Species Test-statistic Test AUC sensitivity specificity TSS 

 

Boyce Index 

 Chi-square 26.8 1.8 61.6 27.6 40.1 

Commelina africaa Significance <0.01 0.94   < 0.01 <0.01 <0.01 

 Chi-square 30.2 1.3 57.6 22.5 13.9 

Cleomen gynandra Significance <0.01 0.97 <0.01 <0.01 0.03 

 Chi-square 31.1 7.0 55.4 16.9 28.6 

 Corchorus olitorius Significance <0.01 0.32 <0.01 0.01 <0.01 

 Chi-square 29.1 12.5 52.9 20.6 28.1 

Ceratotheca sesamoides Significance <0.01 0.05 <0.01 <0.01 <0.01 

 Chi-square 22.8 10.5 29.4 15.1 31.7 

Gymnanthemum amygdalinum Significance <0.01 0.10 <0.01 0.02 <0.01 

 Chi-square 15.6 8.6 50.7 16.4 9.9 

 Hibiscus sabdariffa Significance 0.02 0.20 <0.01 0.01 0.13 



12 

 
UDSIJD Vol 5(2): 2026-5336: 2018 

 Chi-square 14.2 5.6 62.1 12.9 30.2 

Solanum aethiopicum Significance 0.03 0.47 <0.01 0.04 <0.01 

 Chi-square 15.4 4.1 49.0 7.9 7.3 

Solanum macrocarpon Significance 0.02 0.66 <0.01 0.24 0.29 

 Chi-square 12.3 3.8 39.5 7.4 7.6 

Solanum scabrum Significance 0.06 0.71 <0.01 0.28 0.27 

 Chi-square 14.4 3.8 47.2 6.5 1.1 

Talinum fruticosum Significance 0.03 0.70 <0.01 0.37 0.98 

 

Most of the predicted future potential areas also 

followed this trend (Figure 7a-j). However, there 

were instances where the magnitude of the predicted 

areas of the present and future change sizes as a result 

of thinning. For eight out of the 10 species, spatial 

thinning increased the potential predicted areas of 

both the present and the future 2070. However, for 

Corchorus olitorius (Figure 7c) closer spacing of 

data points (0, 10, and 20km thinning) predicts a 

larger present climatic enveloped for the species than 

for the future 2070, while wider spacing (60, 80, and 

100km) predicts a smaller present suitable climatic 

envelope than for the future. There can be only one 

‘true’ climatic envelope for the species and it can 

either be larger or smaller than the present but not 

both. The reverse of this situation occurs in G. 

amygdalinum (Figure 7e). For these species either 

one or both observed situations may be wrong. 
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Figure 1: Box and whiskers plot of the area under the curve (AUC) and thinning distance (km). The box represents 

the inter-quartile range. The line in the box represents the median. (a) C. africana, (b) C. gynandra, (c) C. olitorius 

(d) C. sesamoides, (e) G. amygdalinum, (f) H. sabdariffa, (g) S. aethiopicum (h) S. macrocarpon (i) S. scabra (j) 

T. fruticosum. 
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Figure 2: Box and whiskers plot of Boyce Index for each of the species shows a decrease with increasing thinning 

distance. (a) C. africana, (b) C. gynandra, (c) C. olitorius (d) C. sesamoides, (e) G. amygdalinum, (f) H. 

sabdariffa, (g) S. aethiopicum (h) S. macrocarpon (i) S. scabra (j) T. fruticosum 
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Figure 3: Box and whiskers plot of the true skill statistic (TSS) and thinning distance (km). The box represents 

the inter-quartile range. The line in the box represents the median. (a) C. africana, (b) C. gynandra, (c) C. olitorius 

(d) C. sesamoides, (e) G. amygdalinum, (f) H. sabdariffa, (g) S. aethiopicum (h) S. macrocarpon (i) S. scabra (j) 

T. fruticosum 
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Figure 4: Box and whiskers plot of specificity and thinning distance (km) showing a decreasing trend with thinning 

distance. The box represents the inter-quartile range. The line in the box represents the median (a) C. africana, 

(b) C. gynandra, (c) C. olitorius (d) C. sesamoides, (e) G. amygdalinum, (f) H. sabdariffa, (g) S. aethiopicum (h) 

S. macrocarpon (i) S. scabra (j) T. fruticosum 
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Figure 5: Box and whiskers plot of sensitivity and thinning distance (km). The box represents the inter-quartile 

range. The line in the box represents the median. (a) C. africana, (b) C. gynandra, (c) C. olitorius (d) C. 

sesamoides, (e) G. amygdalinum, (f) H. sabdariffa, (g) S. aethiopicum (h) S. macrocarpon (i) S. scabra (j) T. 

fruticosum 
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Figure 6: Box and whiskers plot of the predicted mean area of the present (1990) and the future (2070) of 10 

indigenous vegetables. Blue represents the prediction for the present condition (mean of 1960-1990 climate data); 

brown represents future (2070) prediction. 
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Figure 7: Box and Whiskers plot of present 1990 (blue) and future 2070 (brown) predicted areas (km2) for 

different thinning distances for species of wild and semi-wild vegetables. Species are (a) C. africana; (b) C. 

gynandra; (c) C. olitorius; (d) C. sesamoides; (e) G. amygdalinum; (f) H. sabdariffa; (g) S. aethiopicum; (h) S. 

macrocarpon; (i) S. scabrum; and (j) T. fruticosum 

Discussion 

Global Biodiversity Information Facility (GBIF, 2018) 

is an important source of biodiversity information for 

research and probably is the largest single collection of 

digital species data (Hortal et al., 2008; Yesson et al., 

2007). However, the data has been shown to be biased 

for some species examined (Bayor, 2012; Beck et al., 

2014; Ruete, 2015). The magnitude of this bias may be 

unknown for any particular species (Yesson et al., 

2007). However, use of these data for species 

distribution modelling must take into consideration the 

bias that may be inherent in the data (Fourcade et al., 

2014; Phillips et al., 2009; Syfert et al., 2013). Spatial 

thinning (removing records such that the remaining are 

at least a specified distance apart) is one method that 

has been shown to be promising in correcting for 

spatial bias (Fourcade et al., 2014; Kramer-Schadt et 

al., 2013). In this experiment, clustering was not 

formally tested. However, visual plots (not shown) 

were examined and showed clustering to varying 

degrees among the various species.  

Biased records when used to build a species 

distribution model results in inflated AUC values 

making models appear better than they really are 

(Bayor, 2012; Bean, Stafford & Brashares, 2012; 
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Hijmans, 2012). In this experiment the AUC values of 

the un-filtered data gave the highest AUC values 

probably confirming this issue.  

Potential predicted areas were, however, the smallest. 

This probably suggests that, while the AUC values 

might be inflated, the areas predicted might be under-

estimated (Bayor, 2012; Bean et al., 2012).  

Although this experiment was not set-up to investigate 

sample size, it is known that insufficient sample size 

gives poor models (Wisz et al., 2008). The number of 

records required to build a reliable model depends on 

the characteristics of the species, whether it has wide 

range or is range restricted but in either case up to 20 

or 25 records seems to be sufficient to build reliable 

models (Hernandez et al., 2006; Soultan & Safi, 2017). 

When records are spatially unbiased, even fewer 

records (less than 20) might still produce reliable 

models (Bean et al., 2012; van Proosdij et al., 2016). In 

our case the widest thinning (100km) left Talinum 

fruticosum (the species with the least records) with 

only 25 data points. Given the wide spacing applied to 

the data points, clustering may not be an issue, and this 

number of records is probably sufficient to give 

reliable models.  

AUC, Boyce index, TSS and specificity all decreased 

with spatial thinning (Figure 1a-j; Figure 2a-j; Fig 3a-

j; Figure 4a-j). This might suggest that, as the spatial 

thinning distance increased the ability of the model to 

discriminate between suitable and unsuitable areas 

reduced probably because fewer records were used for 

training and testing of the model. However, the 

purpose of the thinning is to improve accuracy by 

removing bias in the data. Although the validity of 

AUC and TSS as reliable measures of model accuracy 

with presence only data have been questioned many 

times (Jiménez-Valverde, Lobo, & Hortal, 2008; Leroy 

et al., 2017; Lobo et al., 2008; Somodi, Lepesi, & 

Botta-Dukát, 2017), the fact that there was consensus 

among all four measures might suggest in this instance 

the models are reliable. Thinning may therefore, 

involve sacrificing some level of model discriminatory 

power for improvement in predicted area. 

The increase in spread of the model assessment 

parameters with thinning distance is also a pointer to 

the issue that when data points are lost, stability of the 

discriminatory power is lowered. It is therefore 

necessary to be mindful of the accuracy of the model 

assessment statistics when thinning is applied 

(Fourcade et al., 2014) 

MAXENT (Phillips, Anderson, & Schapire, 2006) is a 

widely used species distribution modelling package 

(Guillera-Arroita, 2017) and may be robust even under 

small sample sizes (Hernandez et al., 2006) although 

Feeley and Silman (2011) suggest accurate models 

may require more data than previously thought. 

Graham et al. (2008) found MaxEnt gave accurate 

predictions even when location data were 

experimentally degraded probably suggesting MaxEnt 

is robust against locational data errors which are a 

common feature of databases such as GBIF (Beck et 

al., 2014; Hortal et al., 2008; Yesson et al., 2007).  

However, accounting for the bias in the use of GBIF 

data is important (Fourcade et al., 2014; Kramer-

Schadt et al., 2013). Spatial thinning appears to be one 

of the high performing methods in correcting bias in 

location data during species distribution modelling 

(Aiello-Lammens et al., 2015; Kramer-Schadt et al., 

2013). Our investigation in this experiment indicates 

that spatial thinning increases the predicted potential 

area and this may resolve the issue of under-prediction 

of the potential area (Bayor, 2012; Kramer-Schadt et 

al., 2013). For eight of the ten species modelled, the 

100km distance thinning did not produce the largest 

predicted area, meaning that area does not 

continuously increase with increasing thinning. The 

thinning distance at which the maximum predicted area 

occurred varied with species and might also have to do 

with the nature (amount of clustering) of the data 

obtained. Optimal thinning distance, therefore, may 

depend on several factors and may have to be 

determined individually for each modelling situation.  

The potential effect of climate change on the 

distribution of a species is influenced by the spatial 

distribution of the modelling data. Spatial thinning can 

alter the structure of the modelling data (Aiello-

Lammens et al., 2015). This can have both beneficial 

and adverse effects on the final model. For example, in 

a rugged terrain, climatic variables may have narrow 

distribution ranges. Thinning may accidentally remove 

all records within a specific climatic range leading to 

climatic incompleteness resulting in a wrong model 

(Kadmon et al., 2003). In fact, this can apply to any 

environmental variable used in the modelling exercise. 

Over a range of thinning distances, it might probably 

cause incongruence between present and future 

prediction results of thinning at different spatial 

resolutions. Such situations can only be avoided by an 

understanding of the species range and characteristics. 
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Climatic completeness or having data that fully 

represent the climatic range of the species is a pre-

requisite to a reliable and accurate model (Kadmon et 

al., 2003).  

Conclusions 

Future climate change would cause re-distribution of 

indigenous vegetables mostly by expansion of ranges 

but for C. africana there is going to be significant 

reduction. This may lead to unavailability of C. 

africana in some areas where it might have been used 

previously as a vegetable. We suggest cultivation and 

marketing as mechanisms to sustain availability where 

shortages may result. Spatial thinning increases 

potential predicted areas for both present and future. 

Thinning therefore appears to solve the important issue 

of under prediction as a result of spatial bias and can 

be used where data observation records are sufficient. 

Thinning may, however, inadvertently lead to variable 

incompleteness and may lead to unexpected results and 

therefore, should be used cautiously.  
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APPENDICES 

Appendix 1: Median (minimum and maximum in parenthesis) values of model assessment 
statistics for 10 species of African Indigenous vegetables at different spatial thinning. AUC= 
area under the curve of the receiver operating characteristic curve;TSS = True skill statistic. 
 Thinning Distance (km) 
 0 10 20 40 60 80 100 

Statistic/Species       Commenlina africana     

AUC 0.93 0.93 0.93 0.92 0.9 0.9 0.86 

(0.9-0.95) (0.91-0.94) (0.91-0.94) (0.88-0.93) (0.87-0.94) (0.82-0.93) (0.85-0.92) 

Sensitivity 0.89 0.89 0.88 0.88 0.87 0.88 0.82 

(0.78-0.95) (0.8-0.95) (0.83-0.91) (0.7-0.91) (0.73-0.92) (0.7-0.95) (0.65-1) 

Specificity 0.88 0.88 0.88 0.84 0.82 0.82 0.8 

(0.87-0.89) (0.87-0.89) (0.87-0.88) (0.83-0.85) (0.81-0.84) (0.79-0.84) (0.78-0.81) 

TSS 0.77 0.77 0.75 0.71 0.69 0.68 0.62 

(0.67-0.83) (0.69-0.82) (0.71-0.79) (0.55-0.75) (0.57-0.75) (0.53-0.77) (0.45-0.79) 

Boyce Index 0.94 0.91 0.93 0.92 0.87 0.81 0.81 

(0.91-0.99) (0.84-0.96) (0.89-0.98) (0.82-0.97) (0.74-0.95) (0.72-0.89) (0.49-0.89) 
 

      Cleome gynandra     

AUC 0.84 0.82 0.82 0.79 0.78 0.76 0.77 

(0.79-0.85) (0.79-0.88) (0.79-0.87) (0.71-0.87) (0.7-0.84) (0.7-0.84) (0.68-0.81) 

Sensitivity 0.85 0.85 0.84 0.84 0.8 0.81 0.82 

(0.78-0.89) (0.76-0.94) (0.68-0.97) (0.63-0.96) (0.6-0.95) (0.67-0.95) (0.75-0.88) 

Specificity 0.65 0.63 0.63 0.61 0.59 0.55 0.54 

(0.63-0.66) (0.62-0.65) (0.61-0.65) (0.58-0.64) (0.57-0.62) (0.5-0.61) (0.51-0.57) 

TSS 0.5 0.48 0.48 0.44 0.41 0.38 0.37 

(0.41-0.53) (0.39-0.57) (0.33-0.59) (0.26-0.54) (0.21-0.53) (0.26-0.49) (0.29-0.45) 

Boyce Index 0.87 0.84 0.87 0.81 0.78 0.74 0.79 

(0.78-0.94) (0.53-0.97) (0.32-0.92) (0.62-0.93) (0.63-0.93) (0.58-0.9) (0.67-0.88) 
 

      Corchorus olitorius     

AUC 0.87 0.88 0.84 0.83 0.8 0.79 0.77 

(0.84-0.91) (0.8-0.89) (0.78-0.93) (0.78-0.87) (0.73-0.88) (0.74-0.88) (0.62-0.89) 

Sensitivity 0.86 0.85 0.85 0.79 0.83 0.81 0.74 

(0.77-0.94) (0.74-0.89) (0.7-1) (0.71-0.88) (0.6-1) (0.69-0.92) (0.27-1) 

Specificity 0.71 0.71 0.69 0.68 0.65 0.65 0.68 

(0.70-0.73) (0.69-0.74) (0.66-0.71) (0.66-0.69) (0.61-0.67) (0.62-0.68) (0.66-0.7) 

TSS 0.57 0.57 0.53 0.47 0.47 0.46 0.41 

(0.48-0.64) (0.45-0.59) (0.38-0.67) (0.39-0.56) (0.25-0.64) (0.31-0.58) (-0.03-0.66) 

Boyce Index 0.84 0.86 0.82 0.81 0.76 0.69 0.66 

(0.74-0.92) (0.79-0.91) (0.64-0.93) (0.42-0.91) (0.68-0.87) (0.4-0.89) (0.43-0.87) 
 

      Ceratotheca sesamoides   

AUC 0.92 0.91 0.89 0.86 0.85 0.85 0.83 

(0.86-0.94) (0.85-0.96) (0.86-0.94) (0.82-0.95) (0.77-0.91) (0.77-0.93) (0.74-0.91) 

Sensitivity 0.86 0.83 0.82 0.81 0.73 0.79 0.72 

(0.68-0.92) (0.76-0.95) (0.75-0.94) (0.62-1) (0.55-0.91) (0.56-1) (0.56-1) 
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Specificity 0.81 0.79 0.78 0.76 0.77 0.75 0.75 

(0.80-0.82) (0.78-0.81) (0.76-0.81) (0.74-0.78) (0.75-0.79) (0.73-0.77) (0.73-0.77) 

TSS 0.67 0.63 0.6 0.57 0.5 0.53 0.47 

(0.50-0.74) (0.56-0.73) (0.53-0.71) (0.39-0.77) (0.3-0.68) (0.33-0.76) (0.31-0.74) 

Boyce Index 0.88 0.87 0.88 0.74 0.8 0.79 0.76 

(0.80-0.95) (0.82-0.94) (0.73-0.95) (0.66-0.83) (0.42-0.92) (0.5-0.95) (0.48-0.82) 
 

     
  
Gymnanthemum amygdalinum      

AUC 0.88 0.87 0.86 0.83 0.79 0.8 0.79 

(0.83-0.9) (0.8-0.93) (0.77-0.91) (0.77-0.87) (0.72-0.9) (0.75-0.89) (0.7-0.88) 

Sensitivity 0.83 0.81 0.82 0.78 0.73 0.75 0.65 

(0.71-0.92) (0.59-0.95) (0.58-0.89) (0.56-0.87) (0.54-0.92) (0.55-0.91) (0.45-0.91) 

Specificity 0.73 0.72 0.72 0.73 0.71 0.7 0.71 

(0.71-0.75) (0.71-0.75) (0.71-0.74) (0.7-0.75) (0.68-0.72) (0.67-0.73) (0.67-0.77) 

TSS 0.56 0.53 0.53 0.5 0.44 0.45 0.37 

(0.44-0.66) (0.33-0.67) (0.31-0.61) (0.29-0.6) (0.24-0.6) (0.24-0.62) (0.17-0.6) 

Boyce Index 0.88 0.79 0.83 0.73 0.66 0.65 0.56 

(0.75-0.93) (0.59-0.89) (0.71-0.9) (0.54-0.91) (0.45-0.91) (0.44-0.73) (0.4-0.79) 
 

      Hibiscus sabdariffa     

AUC 0.87 0.89 0.86 0.86 0.82 0.8 0.79 

(0.72-0.95) (0.75-0.97) (0.78-0.9) (0.77-0.92) (0.67-0.91) (0.61-0.89) (0.54-0.91) 

Sensitivity 0.83 0.84 0.82 0.8 0.89 0.71 0.71 

(0.6-0.93) (0.67-1) (0.73-0.92) (0.3-0.9) (0.63-1) (0.57-1) (0.17-1) 

Specificity 0.76 0.72 0.74 0.7 0.69 0.68 0.67 

(0.72-0.79) (0.71-0.77) (0.72-0.75) (0.66-0.75) (0.67-0.71) (0.66-0.71) (0.64-0.7) 

TSS 0.58 0.56 0.56 0.5 0.57 0.4 0.39 

(0.37-0.7) (0.42-0.72) (0.46-0.65) (0.05-0.6) (0.33-0.69) (0.25-0.68) (-0.15-0.67) 

Boyce Index 0.82 0.85 0.87 0.83 0.81 0.81 0.77 

(0.62-0.96) (0.4-0.94) (0.76-0.92) (0.65-0.96) (0.55-0.91) (0.63-0.9) (0.58-0.89) 
 

      Solanum aethiopicum     

AUC 0.95 0.95 0.95 0.94 0.93 0.93 0.89 

(0.93-0.97) (0.93-0.96) (0.92-0.96) (0.91-0.97) (0.87-0.96) (0.86-0.97) (0.85-0.97) 

Sensitivity 0.87 0.85 0.86 0.81 0.79 0.78 0.73 

(0.74-0.97) (0.7-0.93) (0.55-0.91) (0.67-0.94) (0.42-0.92) (0.4-1) (0.5-1) 

Specificity 0.95 0.94 0.94 0.93 0.92 0.91 0.88 

(0.95-0.95) (0.93-0.95) (0.93-0.94) (0.91-0.94) (0.9-0.93) (0.9-0.93) (0.87-0.9) 

TSS 0.82 0.79 0.8 0.74 0.71 0.69 0.61 

(0.69-0.92) (0.65-0.86) (0.49-0.85) (0.6-0.86) (0.34-0.83) (0.33-0.91) (0.39-0.87) 

Boyce Index 0.89 0.89 0.87 0.82 0.78 0.69 0.76 

(0.82-0.96) (0.81-0.94) (0.65-0.94) (0.66-0.87) (0.52-0.95) (0.54-0.83) (0.64-0.92) 
 

      Solanum macrocarpom     

AUC 0.94 0.94 0.94 0.94 0.92 0.91 0.91 

(0.9-0.97) (0.9-0.96) (0.89-0.96) (0.91-0.95) (0.88-0.97) (0.83-0.97) (0.8-0.96) 

Sensitivity 0.87 0.85 0.83 0.81 0.81 0.75 0.71 

(0.56-1) (0.54-0.92) (0.67-1) (0.64-0.9) (0.5-1) (0.57-1) (0.17-1) 

Specificity 0.92 0.91 0.91 0.91 0.89 0.87 0.88 
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(0.9-0.93) (0.9-0.92) (0.89-0.92) (0.89-0.92) (0.88-0.91) (0.86-0.88) (0.85-0.9) 

TSS 0.78 0.75 0.72 0.72 0.7 0.62 0.61 

(0.49-0.91) (0.45-0.83) (0.58-0.91) (0.54-0.81) (0.41-0.9) (0.44-0.86) (0.06-0.89) 

Boyce Index 0.87 0.79 0.79 0.78 0.78 0.79 0.76 

(0.66-0.91) (0.46-0.95) (0.56-0.83) (0.54-0.92) (0.39-0.94) (0.24-0.92) (0.57-0.88) 
 

     Solanum scabrum      

AUC 0.95 0.94 0.93 0.91 0.93 0.9 0.89 

(0.87-0.98) (0.84-0.99) (0.81-0.98) (0.8-0.96) (0.74-0.96) (0.8-0.95) (0.8-0.96) 

Sensitivity 0.83 1.00 0.78 0.75 1.00 0.67 0.67 

(0.5-1) (0.2-1) (0.5-1) (0.5-1) (0.25-1) (0.67-1) (0.33-1) 

Specificity 0.91 0.89 0.88 0.88 0.86 0.84 0.86 

(0.88-0.91) (0.85-0.91) (0.87-0.89) (0.86-0.91) (0.81-0.91) (0.81-0.86) (0.82-0.91) 

TSS 0.74 0.86 0.65 0.63 0.82 0.53 0.54 

(0.41-0.91) (0.11-0.9) (0.37-0.88) (0.4-0.87) (0.12-0.89) (0.51-0.84) (0.24-0.86) 

Boyce Index 0.84 0.82 0.85 0.82 0.82 0.9 0.86 

(0.65-0.95) (0.69-0.92) (0.49-0.92) (0.73-0.92) (-0.16-0.93) (0.57-0.99) (0.3-0.91) 

        Talinum fruticosum     

AUC 0.97 0.94 0.95 0.93 0.9 0.92 0.91 

(0.9-0.99) (0.9-1) (0.89-0.99) (0.88-0.99) (0.84-0.99) (0.88-0.96) (0.83-0.97) 

Sensitivity 0.91 0.73 0.67 0.75 0.67 0.67 0.67 

(0.55-1) (0.57-1) (0.5-1) (0.25-1) (0.33-1) (0-1) (0.33-1) 

Specificity 0.94 0.92 0.93 0.91 0.89 0.92 0.90 

(0.92-0.96) (0.9-0.94) (0.91-0.94) (0.89-0.93) (0.86-0.92) (0.9-0.93) (0.86-0.91) 

TSS 0.85 0.67 0.6 0.65 0.57 0.58 0.57 

(0.51-0.94) (0.50-0.91) (0.44-0.93) (0.18-0.91) (0.25-0.89) (-0.09-0.92) (0.23-0.91) 

Boyce Index 0.82 0.84 0.83 0.81 0.83 0.84 0.83 

(0.64-0.94) (0.59-0.95) (0.65-0.92) (0.27-0.87) (0.47-0.90) (0.02-0.94) (0.59-0.94) 

 

 

 

 

 

 

 

 

 


